This site is intended for U.S. healthcare professionals.
Driver mutations regulate distinct molecular pathways in the evolution of MDS, which can inform disease classification and prognostic stratification.1 The pathogeneses of MDS involve recurrent genomic alterations, including somatic gene mutations and/or chromosomal abnormalities, that can define biologically distinct clinical subtypes.2,3
The IPSS-M is an important prognostic tool that factors in information about somatic gene mutations along with hematologic and cytogenetic parameters to improve risk stratification in patients with MDS.2,4
The isocitrate dehydrogenase-1 (IDH1) gene encodes for the cytoplasmic protein IDH1, an enzyme that participates in the citric acid cycle by catalyzing the conversion of isocitrate to alpha-ketoglutarate (α-KG).5
The mutated IDH1 (mIDH1) gene is associated with unfavorable outcomes in MDS. The mIDH1 enzymes catalyze the reduction of α-KG to the oncometabolite of 2-hydroxyglutarate, which is associated with5:
Up to 4% of patients with MDS harbor IDH1 mutations, and the mutation rate may double in patients who progress to AML7
mIDH1 MDS may be associated with poorer survival7
Learn more about the role of mIDH1 in MDS
Due to clonal evolution, a patient’s molecular profile may change over time.2,10 Molecular testing at the time of diagnosis, disease progression, and relapse can help guide risk stratification and management of patients with MDS.2,10,11
Polymerase chain reaction (PCR)–based single-gene test
Next generation sequencing (NGS)
Genetic testing results reflect the heterogeneity of AML. Mutations change over the course of a disease, and a molecular profile may be different at diagnosis than at relapse.15
Molecular profiling of AML through targeted sequencing panels has become a cornerstone in risk-stratifying AML patients and directing clinicians toward the best treatments for their patients.16
Up to 14% of patients with AML harbor IDH1 mutations.18
mIDH1 is a driver mutation in AML and may be associated with a poor prognosis20-22
Learn more about the role of mIDH1 in AML
Purple stars represent mutations and yellow circles indicate methyl groups. The main epigenetic changes involve mutations in IDH1, IDH2, TET2, and DNMT3a, which modify DNA methylation patterns.
Molecular testing at the time of diagnosis, remission, and relapse can provide a wide range of data to help guide the customized clinical therapy of AML patients.25
Learn more about the role of molecular testing in AML and how you can help your patients
Download nowAML, acute myeloid leukemia; IPSS-M, International Prognostic Scoring System-Molecular; MDS, myelodysplastic syndromes.
References: 1. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209-2221. doi:10.1056/NEJMoa1516192 2. Caponetti GC, Bagg A. Mutations in myelodysplastic syndromes: core abnormalities and CHIPping away at the edges. Int J Lab Hematol. 2020;42(6):671-684. doi:10.1111/ijlh.13284 3. Arber DA, Orazi A, Hasserjian RP, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200-1228. doi:10.1182/blood.2022015850 4. Bernard E, Tuechler H, Greenberg PL, et al. Molecular international prognostic scoring system for myelodysplastic syndromes. NEJM Evid. 2022;1(7). doi:10.1056/EVIDoa2200008 5. Nakajima H. Molecular pathogenesis and treatment of myelodysplastic syndromes. Intern Med. 2021;60(1):15-23. doi:10.2169/internalmedicine.4214-19 6. Raineri S, Mellor J. IDH1: linking metabolism and epigenetics. Front Genet. 2018;9:493. doi:10.3389/fgene.2018.00493 7. Thol F, Weissinger EM, Krauter J, et al. IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica. 2010;95(10):1668-1674. doi:10.3324/haematol.2010.025494 8. Tobiasson M, Kittang AO. Treatment of myelodysplastic syndrome in the era of next-generation sequencing. J Intern Med. 2019;286(1):41-62. doi:10.1111/joim.12893 9. Bewersdorf JP, Xie Z, Bejar R, et al. Current landscape of translational and clinical research in myelodysplastic syndromes/neoplasms (MDS): Proceedings from the 1st International Workshop on MDS (iwMDS) of the International Consortium for MDS (icMDS). Blood Rev. 2023;60:101072. doi:10.1016/j.blre.2023.101072 10. Platzbecker U, Kubasch AS, Homer-Bouthiette C, Prebet T. Current challenges and unmet medical needs in myelodysplastic syndromes. Leukemia. 2021;35(8):2182-2198. doi:10.1038/s41375-021-01265-7 11. Nazha A, Sekeres MA, Gore SD, Zeidan AM. Molecular testing in myelodysplastic syndromes for the practicing oncologist: Will the progress fulfill the promise? Oncologist. 2015;20(9):1069-1076. doi:10.1634/theoncologist.2015-0067 12. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Myelodysplastic Syndromes V.1.2023. © National Comprehensive Cancer Network, Inc. 2023. All rights reserved. Accessed August 10, 2023. To view the most recent and complete version of the guideline, go online to NCCN.org. 13. Qin D. Molecular testing for acute myeloid leukemia. Cancer Biol Med. 2021;19(1):4-13. doi:10.20892/j.issn.2095-3941.2020.0734 14. Duncavage EJ, Bagg A, Hasserjian RP, et al. Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood. 2022;140(21):2228-2247. doi:10.1182/blood.2022015853 15. Bullinger L, Döhner K, Döhner H. Genomics of acute myeloid leukemia diagnosis and pathways. J Clin Oncol. 2017;35(9):934-946. doi:10.1200/JCO.2016.71.2208 16. Cai SF, Levine RL. Genetic and epigenetic determinants of AML pathogenesis. Semin Hematol. 2019;56(2):84-89. doi:10.1053/j.seminhematol.2018.08.001 17. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Acute Myeloid Leukemia V.4.2023. © National Comprehensive Cancer Network, Inc. 2023. All rights reserved. Accessed August 10, 2023. To view the most recent and complete version of the guideline, go online to NCCN.org. 18. Megías-Vericat JE, Ballesta-López O, Barragán E, Montesinos P. IDH1-mutated relapsed or refractory AML: current challenges and future prospects. Blood Lymphat Cancer. 2019;9:19-32. doi:10.2147/BLCTT.S177913 19. Steinhäuser S, Silva P, Lenk L, et al. Isocitrate dehydrogenase 1 mutation drives leukemogenesis by PDGFRA activation due to insulator disruption in acute myeloid leukemia (AML). Leukemia. 2023;37;134-142. doi:10.1038/s41375-022-01751-6 20. Molenaar RJ, Maciejewski JP, Wilmink JW, van Noorden CJF. Wild-type and mutated IDH1/1 enzymes and therapy responses. Oncogene. 2018;37(15):1949-1960. doi:10.1038/s41388-017-0077-z [Erratum in Oncogene. 2018;37(43):5810] 21. Xu Q, Li Y, Lv N, et al. Correlation between isocitrate dehydrogenase gene aberrations and prognosis of patients with acute myeloid leukemia: a systemic review and meta-analysis. Clin Cancer Res. 2017;23(15):4511-4522. doi:10.1158/1078-0432.CCR-16-2628 22. Roboz GJ, DiNardo CD, Stein EM, et al. Ivosidenib induces deep durable remissions in patients with newly diagnosed IDH1-mutant acute myeloid leukemia. Blood. 2020;135(7):463-471. doi:10.1182/blood.2019002140 23. Ok CY, Loghavi S, Sui D, et al. Persistent IDH1/2 mutations in remission can predict relapse in patients with acute myeloid leukemia. Haematologica. 2019;104(2):305-311. doi:10.3324/haematol.2018.191148 24. Lagunas-Rangel FA, Chávez-Valencia V, Gómez-Guijosa MÁ, Cortes-Penagos C. Acute myeloid leukemia—genetic alterations and their clinical prognosis. Int J Hematol Oncol Stem Cell Res. 2017;11(4):328-339. 25. Stuckey R, Bilbao-Sieyro C, Gómez-Casares MT. A summary of the molecular testing recommended in acute myeloid leukemia. Ann Mol Genet Med. 2020;4(1):12-17. doi:10.17352/amgm.000007 26. Data on file. Servier Pharmaceuticals LLC.